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A GENERAL THEORY FOR THE FUSION OF DATA

I.R. Goodman

Command I Control Department
Code 421

Naval Ocean Systems Center
San Diego, California 92152

Abstract future eevrloemwr.ts, Recent events in theoretical
physics involving *superstring" theory, an attempt at

The problem of data fusion is in a real sense the developing a Grand Unified Theory of the Universe.
problem of how to model the real world with all of its underscore this quest 1].
great complexities. A miniaturized version of this is
the multiple target tracking and data association prob- In a more modest way, this paper seeks to estab-
leam. There,& number of pieces of information arrive. lish a theory unifying, coordinating, and extending
typically from disparate sources - such as from various the somewhat appearing distinct consepts of data fus-
sensing systems and from human sources in the form of ion, combination of evidence, and C systems analysis.
narrative descriptions in natural language. A procedure On the other hand. relatively little attention will be
has already been established for dealing with this type paid here to detailed computational techniques which
of situation, called succinctly the PACT algorithm. are particular to certain types of common data fusion
(PACT - Possibilistic Approach to Correlation and problems such as regression procedures for combining
Tracking.) The technique is based upon the premise stochastic sensor Information, or maximum likelihood
that all arriving information can be adequately treat- or Bayesian procedures for putting together geoloca-
ad through some appropriate choice of classical or tion data arriving from different sources relative
aultivalued logic such as Probability Logic. Fuzzy to a given target of interest. All of the above-men-
Logic, Lukasiewicz-h Logic, or some(t-norm, t-conorm, tioned techniques are essentially special cases of
negation function)ge/eral logic as discussed in a a much more general combination of evidence approach
recent text of Goodman and Nguyen, Uncertaint Models

for Knowle~ge-3es2,ty MoodelTii si'i on which this parer will concentrate.for go la-lsed Systems. Moreoveitcr

onstiiiiht or-a Targeclass of logics chosen, In the past there has been muci _1spute as to
a version of a partially specified Probability Logic what constitutes data fusion. A rea..onable three-fold
maj he used instead. Indeed, other approaches to un- definition has been proposed in (2]. which, except for
certainty, such as the Dempster-Shafer approach, can a minor modification (as shown below, will be the
also be strongly related to Probability Logic through basis for the work here. In a related vein, mention
the vehicle of random set modeling. In any case, the should be made of the recent (unclassified) survey of
structure of the PACT algorithm is based upon a gen- data fusion techniques (3]. The basic definition for
eralized chaining and disjunction relation, which in data fusion, for completeness, is given below:
a classical probability setting reduces to the usual
posterior probability description as a weighted sum (i) 'The Integration of information from multiple
of intermediate probabilities, an alternative form of sources to produce the most comprehensive and specific
Bayes' formulation. In the PACT algorithm,joint in- unified data about an entity.*
ference rules are represented which connect various
combinations of matches of the intermediate attri- 01) 'The analysis of intelligence infortion from
butes relevant to correlation (such as geolocation, multiple sources covering a number of different events
radar pera eters, visual narratives, etc.) to the to produce a comprehensive report of activity that %
consequential correlation levels between track his- assesses its significance. The analy~is is often sup-
tories. In addition, error relations involving these ported by the inclusion of operational data.'
attributes are also represented. (iii) 'Intelligence usage, the logical blending of

In the present paper, the PACT technique is ex- related information / intelligence from multiple sour-
tended to the full c.mbination of evidence problem, ces.' [ 'After fusion, the sources of the inputs and
viewed as being identical to the general data fusion single pieces of information must not be evident to

problem. In addition, data fusion Is al i nttmatly the user.' This we believe to be too restricted, IRG.]
linked with internodil activity within a larger C
system. Mere such C systems are identified as net- One of the most common examples of fusion of data
works of interacting decison-maker node complexes, occurs in the multiple target-tracking problem. Here,
Some general examples of data fusion in this context information arrives en disparate form. Typically. this

are presented. Including a new approach to the use Includes sensor Information emanating from possibly
of marginal conditional probabilities measuring valid- several different types of sources, such as radar.
ity of inference rules via 'conditional objectS', acoustic, non-acoustic, infra-red, and various others.In addition, non-mechanical / human sensor sources %

ray be present in the form of natural language narra-
1. INTRODUCTION tives or descriptions, possibly in a parsed form,suit-

able for symbolizations. Much of the arriving informe-
For the past several years, throughout many fields tion can be related to the targets' observed or pre-

of science and technology, researchers have been seek- dicted positions, velocities, or related equations of
ing unification and extension of past results in order motion. On the other hand, some of the data may refer
to explain reality better and to be able to predict to other characteristics or attributes of the targets.
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Examples ofthe latter include. hull lengths, vessel cision-makers, human or automated, interfacing with
shapes, observed flag colors, names. classifications, each other in general. Each node receives "signals'-
and other non-geolocational sensor parameter esti- which my be ordinary communication signals, either
mates. from friendly or hostile sources (possibly unaware),

or which may be received weapon fire. In general.
Nevertheless, as recently as a few years ago, the these 'signals* are stacked vectors comprised of in-

great majority of approaches to target data fusion coming data from several different nodes. In turn,
were concerred only with target positions and other each node, which may consist of a sinqle decision-
geolocation data and ignored, at least in a formal maker or some coalition of decision-r.a~ers ard which

way. most of the other potentially useful stochastic may Include passive type decision-makers, such as
and non-stochastic (such as linguistic) information. "followers" . then processes the ddta. This is follow-
For a solid Justification of this conclusion, see (4] ed by a response or action taken towards other nodes.

and [5], where a comprehensive survey of multiple friendly or hostile. (See Figure 1.) Associated with

target-tracking techniques was carried out. For
comprehensive mathematical treatments of such "class-
Ical" data association and correlation, see [6]
e.g. For an exception to the above s tatement cdn- FINL
cerning the restriction of fusion to golocation-ol7 AIRENANY NODE
information, see, e.g. [7],[8],[]. 3 DECIIO NADE

However, with the advent of Al in the form of L STATIONARY
expert and knowledge-based systems, it is apparent ENEMY NODE:
that this additional information could be utilized. FORMATION OF
(See. e.g. C10].) Following the lead of medical diag- FRIENDLY NODE: EAEY NO VNG
nostic system such as MYCIN [11], many such systems ARMY SQUAD
(not necessarily military oriented) utilize only MOVING TO ENGAGE r L
two-valued logic in conjunction with some use of COMMAND COMPLEX
probabilities to represent confidences. On the other
hand, som approaches take a'softer' decision view-
point as to the nature of descriptions and employ INDICATES INTERVENING C

3 
ENVIRONMENT AFFECTING

throughout some form of multivalued logic (such as RECEIVED "SIGNALS" AND RESPONSES: TERRAIN, WEATHER.
the PACT algorithm [12]). SECRECY NEED

Moreover, data fusion is intimately related to "" INDICATE NODE ACTIVITY AT GIVEN TIME SLICE:
the functioning of C

a 
system. Indeed. in many cases, RECEIVED *SIGNAL* OR RESPONSE

data fusion may be perceived as an Interacting decis-
ion process occurring within gach decision-maker
node relative to the entire CS setwork of nodes. Figure 1. "Signal* and Response Activity in a Portion

Thus. any ongoing work in the C arena, must effect of Two C3 System.

data fusion eforts. Since 1978, the annual MIT/OKR
Workshop on C System - with Its associated (un-
classified) annual Proceedings - has serve1 as one of THREAT LEVEL (TH)
the primary academic sources for generic C1 studies. no. Of M NC (NM)
(See [13] for a partial survey of these efforts. See NODE

also 14] for a more thorough survey of CJ work, where STATE SUPLYALE (M)

many abstreits. analyses, and comparisons and con- PM) E. OF NTION (EQM)

trasts of C theories and related work are liven.) DA()AGE LEVEL (DL)

Surprisingly. relatively few comprehensive theories PHYS. PLANT CHAR.(PL)
of C

3 
system have been produced, although many val NODE .... "

uable papers have been written as a result of the C N
Workshop on problems of distributive decision-making. STATE .-........... . ------ - -- ....---
hierarchical system. comunications and security, AVAIIMABLE UPATE
multiple target-tracking and correlation, and various ESTIMATE OF OTHER
miscellaneous gaet-theuretic and jorfare design prob- KNOWLEOCE- NODE STATES (R)
lems. Among the few theories of C should be mentioned BNSE ( NO T STAPES ( )
(41] and [42]. the latter taking a related vi of fusio% BASE (T) ALGOrThM SUPPLY (F)

Based upon the above remarks, it is the author's % INTERNAL NODE
conclusion that: STRUCTURE (INS)

(1) Data fusionas coamonly applied, is a process 3
occurring tntranodally wfthia the context of an ap- Figure 2. Components of C

3 
Node States.

propriately chosen overall CJ system. That Is.fusion
occurs typically within decision-making nodeo.

(2) All analysis and models of C
3 
systems must in- I N T E R N A L O A T A P R 0 C E S S

clude subanalysis and models for fusion processes. In
particular, this applies to this author's proposed INCOMINGURCEodel for stam [15].[16]. NLISUC I-Z--..

"SIGNALS' (S) INITI AL COMBINATION

(3) Data fusion In its most generic sense can be "F
equated with the combination of evidence problem, a SEN ING (D) DATA FUSION (FU)
well-known problem arising in the modeling of uncer- NO 0D0)

tainties for knowledge-based systems. (For further
elaboration and background. see [17].) D H

RESONS .... ALOIH FRMUL AT ION/3RSOS (R SELECTION OIONS/
2. DATA FUSION, C

3 
SYSTEMS, AND DATA PROCESSING J ,u M

Previously, this author proposed a bottoms~up.

mic roscojIc, quantitative approach to generalI3 C sys- Fiue3DaausoasnItgrlPtofaNd'
tems [15 J161. In that approach, a generic C

3 
system Figure 3. Data Fusion as an Integral Part of a Node's

is identified as a network of node complexes of de- Data Processing Structure.

-2-
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each node is the node state (see Figure 2.) describing DATA FUSION PROCESS (,FU
the current stata-of-affairs given in terms of a num-
ber of functions such as threat level, equations of p
aotion, and supply level. In addition, there is an as- INITIAL MENTAL INA6ING/ NATURALANGUAGE/
sociated knowledge base reflecting the node's local DETECTION/ COGNITION MACHINE LANGUAGE:
knowledge of the other modes (friendly or adversary). SENSING (0 Anderson A Bower -TRANFORMATIONSM
Also associated with each node is its internal *signal- ORPGeY Goer

-,

processing design, as described in Figure 3. There. Meyer. Grossberg .
data fusion plays a central role in transmitting de- 

Piaget. McDemott MAR

tected "signals" to hypotheses formulations, which in Chomky. MCawley
turn through algorithm selection leads to an output _ Lyons. Montagu
response to other nodes (again, these my be friendly PAI NG
or adversary). SEMANTIC FULL7FOR LEVALUATIONS/ {LANGUAGE/ Wino gr Schank

Next, since we identify data fusion with the com- LOGICS/ SYNTACTICS
bining of evidence, all of the knowledge-based system MODELS Scott, 8&nabou BASIC S/OiIZATIOIS/
techniques associated with the latter are available.
In particular, this infers (see (17], Chapters 1,2 Zadeh, Gbdel, Kripke,Johnstone /SEMIOTICS
and Figure 1, page 14) that a series of underlying Lukasiewicz,

processes are involved In data fusion. Basically, CrnapPost, Eco, Korzybski,
there are five such processes (including natural
language in its broadest content) given below in se- RAIC LOGIC
quence of information processing: AL DESCRIPTION PA

(1) Cognition: Human and/or machine in recognizing -.. _ -
the pattern of received *signals', recalling that I
"signals* refer to either ordinary signals or any OECISION PROCESS EXAMPLES OF ALDP*S
other received input, including weapons fired. HYPOTHESES ALDP I - (BOOL.ALG..CLASSICAL LOGIC),

(2) Natural Language Formulation: This Is rele- FORMULATION/ ALDP 2 - (MODIFIED BOOL.ALG.
vant to all narratives produced by human observors. OPTIONS/ ZADEW'S FUZZY LOGIC)

Machine language could also be put in this area, if DCISIONS (H)A
used in the sam context. Parsing leads to the next ALOP 3 - (BOOL.ALG.,PROB. LOGIC).
process: ALDP 4 - (COND.BOOL.ALG.,

(3) Primitive symbolic formulation of data, in- COO. PROS . LOGIC).
cluding strings of well-formed formulas according (NEWLY PROPOSED ALDP)
to basic syntax, without further or refined con- IN THE FIRST THREE ALQP'S, IMPLICATION a IS INTERPRETED
straints on structures. Formulations include use of AS e , WHERE (a ") g (B' v a) , FOR ALL PROPOSITIONS u,a.
basic quantifiers and connectors: .,for & ('and' or
conjunction); v,for "or" (disjunction); ( )% for *not' MOIFIrD BCOLEAIl ALCERRA - PSEUDO-COMPLEMENTED
(negation); *,for "if then_" (implication). (DISTRIBUTED)LATTICE.

(4) Full formal language formulation of data: Use Figure 4. Subprocess Expansion of Data Fusion/Combination
of rules of syntax, constraints on wff's, such as of Evidence Process Connecting Initial *Signal"
commutativlty. associativity, idempotence, distrib- Detections with Hypotheses Formulations.
utivityetc.

(5) Full compatible (homomorphic-like) semantic
evaluations or logic chosen (or model selected). 3. DATA FUSION AS A QUANTITATIVE PART OF AN OVERALLC3 SYSTEM AND DECISION GAME

Any consistent or compatible choice of a full
formal language (4) and a semantic evaluation or So far, in this developremt toward a general
logic (5) we will call an algebraic logic description theory for the fusion of data. only general qualita-
pair (ALOP). tive descriptions have been given for the processes

Three comon choices for ALOP are: involved. However, as moitioned before, a quantita-
tive model for generic CJ systems has been established

ALDP 1 " (Boolean algebra(or ring), Classical compatible with these qualitative formulations(IS].
two-valueLogic) with implication A [16]. Inputs to the structure consist basically of
given as 4 , where B "0a is identified ten sorts of known relative primitive relations PRIM
as 0, v a . for all wff's 4.0. among the variables describing a C1 system. These war-

ALDP 2 - (Modified boolean algebra - pseudo-comple- Iables arm:node(N hypotheses selection (H)$ detection
mntad lattice, * n)of Incoming 'signals' (S algorithm selections

Sets or Logic). As above, ) Fuzzy iF)- initial nooe res pnses C).prior to envircnmental
b distortion (G) and additive noise (q). To each van1-

ALDP 3 - (Boolean algebra, Probability Logic);i able is affixed subscripts (g,k) (or (hgk)) where

A fourth useful(Conditional Probability Logic) g-(ai) denotes the identifica tion of a particular
ALOP will be introduced later. In the past, often only node in question in term of the C3 system a (friend-
ALDP 1il or AL rod ed lhoe, In eect often a- ly or hostile) and node number i, while k represents
uLoP n or ALOP 3 were chosen ines. t ih, ethex- a discrete time index t . Specifically, the relation

clusion of oultivalued logical choices. That is, either breaks down into S intrinodal (within nodes) reld-
Classical Logic or Probability Logic,or some combina- tions. 2 Internodal (between nodes) or reression re-
tion,would be chosen for the basic model to combine lations, and 3 prior relations for each C syste.
information or fuse data, with little attention paid T rlations a r ereatin frm c ndyto.
to the formal aspects prior to semantic evaluations. These relations are expressed in terms of conditional(Again, sea 4][S].) "or uncondtonal probabilities, as they stand, but

the result Sn k e xtended, with appropriate replace-
mants, tnQa..m-dtIagrn Ig..e.. ina. (Again, see

Figure 4 summrzes the above analysis of data [lSI.) Then by making certain reasonable sufficiency
fusi on. assumptions among the variables and utilizing basic

properties of conditional probabilities. it can be
shown that each updated node state can be obtained p
explicitly in(probabilistt cterms of the other vari-
ables and node states through PRIM. Thus. we have:

UNCLASSIFIED
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Them 1. (Sea [15]. Theorem 1.) (9) 9,k+1*(Rg k+l10gkNSg~k'Ng.k)

Suppose PRINk and Ngk are as described above - . (l g.k.(Z)g~k.(3)g.kid~g,kdHg k
with PRI/given in further details in eqs. (3.2)- (ov-r all 1p9kAg.0k(

(3.4) a Tables 1-3. Then under the above-mentioned -
sufficiency conditions,

P(Ngk) "i g.k(PRIk) ( (3.1) (lO)g.k+l " P(Ng.k+IDgkSg.k'Ng.k)

where 4gk is a computable functional involving a fi- r (4) ,k+l"(g)gk+l dRg~k+l
ovier all

nitt number of integrations and arithmetic operations Rupon the elements of PRI1k given in Table 4. ( . k+11

a (1 1gdk+l P p(Rg.k*|ISg.kNg.k)

where for C3 system a, g.(ai). etc., 2 -0 )g k+]'( )  )

Osk Ifk (12)g.k~l - P(Ng.k+l.Dg klSg.k'g.k)

and where (3.3) * (lO)gkl( 
5 g9.k,.,,) ,.7 (5 (73),.

PRN ~d(6)hgkl .hgk +1,(h.g~~l g~,( g.k+l - P(Nj.k+lIS9.k.Mg.k)

Osk'k - E ((12)g k+)

(3.4) 
Dggk'a

The numerical symbols (5 )g k etc. ara sorteaned forms (14)h~g.k+l" P(Sg.k+lIRh.k)
for the primitive relationa given in Tables 1-3: P(Qh g"kl -Sgk+l'Gh.g.k+l (Rh.k)),

1g~k " P(Mg~k1Og~kSg~k) ,(15) h.g.k - P(Rh,kiNOWgk+l-h)

(2) ( r , 0 l)h,k'(l6)h.kl 1(le)hk-l dShk-I dNh,k-I

g.k " P(Fg,k'Hg.k) a [over all

(3)g,kf1" P(ng.k+lIFg k.Sg.k'Ng.k), (16)g9k * P(SgklN O)

(4)g.ktl- P(Ngw.kl IRg k+INg,k) - f r (14)h k.(1)h dh dRer all h ~ k n hg ,k-1"()h~g~k-I dh~k-l

(5)gk " P(OgklSg'k" Ngk) * h,-R.)

Table 1. Relative Primitive Intranodal Relations. k17'g,k+ P(9g.k+1INg.kNO)

f f (13) .(16)g dSg A
(er al

(6)h,g.k+l ' P(Qh,gk+l With Ghg,k+lr ( S) 8

hgk P(Wg.k+l ,hi?/O);  (18)(over l (17,k.(IB)9.k.] dNg'k1

The basic internodal analysis is developed via . N
addtive nonlinear regression relation

where variable Wg.k+l indicates original possible

possible node source for "signal" at time k, given
reception by another node at k+l.

Table 4. Structure of In Theorem 1 Through
Table 2. Relative Primitive Internodal Relations. Sequence of Calculations Involving PRI k

PRIOR/INITIAL TINE In turn. a simple two-prson zero sum game can

(8)0 - POO) be established, called the C
3 decision game. Here,

Player I corresponds to ent s tem a-1 (s5y,
friendly) and Player II corresponds to entire C sys-

(iS)h.O. g p(Rh.o11g.l h , N ). tam a-2 (say, adversary). In this game, a move by
Player j correspords o a choice (up to given con-

). ( o )straints) of PRIMIJ)., J-1,I1, and the resulting
g.0 "Ploss or utility d to any such joint move L Is a

function of the marginal updated node state istri-
butions, according to Theorem I as

Table 3. Relative Primitive Prior/Initial Relations Lk(PRIMk).MOEk(UP(Njk)lall 9))

-4-
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MOE k({@*9k(PRIMk)Jall g}), (3.5) table Z Is often present. Z represents the vector of
auxiliary or "nuisance" characteristics or attributes
which can be useful in connecting H, the variable rep-

where NOE represents a single figure-of-merit, corn- resenting possible hypotheses or decisions as to what
bining vaPious measures of effectiveness (moe's) or unknown parameter value or situation or diagnosis is
performance (mop's) for the two C3 systems. (Note, that occurring, with input data S and detection state D.
although ideally the entire Joint node state distri- Thui for example, if we are physically in a bunker-
bution of the two C

3 
systems should be sought, in a C node- S may be observed loud noise, with D-1

practice this is difficult to do, because of the great (definitely detected), and H could have possible do-
combinatoric computations involved.) Typical moe's main values say dom(H)-(Hl,... H5 ) as given in Table S.
that could be used include:averaged measure of import-
ance 11A. k ; averaged measure of threat " ,k ; upper

bound total entropy I ,k ; and averaged measure of 1 no change in previous situation
a~k sH 2 enemy is about to mount the promised big

performance XC, k - all computable through p(h ,)S 2 offense

for C system A, by use of Theorem 1. (See also [15), H3 - enemy is just feeling us outeqS.( 9)-(6 ).) Then one could let J nm sls feigu u
S. (e) Then o oul d et (3.6)H

4 - enemy wants to negotiate

MOEk It MD .k - WE 2.k ,(3.6) IfI , none of the above situations hold

where

NOE + a 2" ,k -Wa
+  

k Table 5. Typical Set of Values for dom(H).

4 a ,k (3.7) Thus.dom(H) could serve as a legimate sample
space, if conditional probability p(HID,S) could be

and the At's are some predetermind weighting obtained for all possible values of H in dom(H). i.e.

Symbolically. the C
3 
decision game appears as (HJD,S) could be interpreted as a random variable

liven In Flqar 5: over dom(H). In this case, suppose also that Z is an
e (auxiliary variable representing any of a likewise col-

Player I (Friendlyq 
3  

stem) lection of disjoint exhaustive situations locally go-
Player II Typical Move: PRIII ing on at the bunker. Here,let dom(Z) be given as in
(Adversary C Table 6 below:
System) n happenilg

Typical Move: I nothing happening

PRIMl'2)| Loss- Lk(PRImk) 2  accidental explosion in compartment #1

Z 3 . accidental explosion in compartment 12 'k

F .Z 4 i enemy shot missile at us and it either

Figure S. Symbolic Form for C
3

Decision Gave. hit us or just missed

Finally, one can then ipply all the usual game- 5 none of the above situations hold

theoretic methods to this C game, such as seeking Table 6. Typical Set of Values for dom(Z).
Bayes decision functions for moves, least favorable
strategies (all subject to practical constraints),
minimax strategies, the game value, and various sensi- Thus, again by disjointness ar,' exhaustion, it
tivity measures. It is the long-range hope that such is reasonable to conclude that dom(Z) could serve as
a game will be a useful decision-aid in planning com- a legitimte sample space and Z can be interpreted as
mend strategy. At present, a relatively simple imple- a ra t samle ace on Z can be interpretedion

mentation scheme is being carried oul for testing the a random variable. All of this leads to the evaluation

feasibility of such an approach to C system. Se of the conditional probabilities p(ZIDS), which to-
(16) for further details.) gether with the values for P(HID,S) can be used to

obtain the standard "integrated-out" form for the post-
erior distribution of H as given below.

4. STRUICThRE FOR DATA FUSION: THE CLASSICAL 5
PROBABILITY CASE p(H-HJ DiS)._P(H &ZiIDu)

With the general C
3 
system context for data I p(Z*ID&S).p(H , (4.2)

fusion established in the previous sections, let us ,, "I&D&S)

now return to the task of developing a general quanti-
tative structure for data fusion. In light of the pre- using the standard chaining property of conditional
vious remarks (again, see Figure 3), fusion is a pro- probabilities and replacing the antecedent comm no-
cess Intermediate with iitisl sensing and hypotheses tation by conjunctions. One could reasonably interpret
formulations, within a C node complex of decision- the evaluation in (4.2) as the probability value for
makers. In addition, the fusion process decomposes in- the expression
to natural subprocesses (see Figure 4). Thus, in "If D and S,then Hi" (4.3)
essence, we wish to expand the first relative primi-
tive intranodal relation appearing In Table 1 : through the probability values for the expressions

P(FU) - p(HIDS) , (4.1) 'If 0 and S, then Zt" and "If Z and 0 and S, then X4

where for reasons of convenience from now on we sup- (4.4)
press the denotional-time indices, unless necessary. of course, one need not use the above evaluation ex-
As stated before, p need not necessarily refer to ord- actl to obtain useful equivalent values. As it stand
inary probability evaluation, but may represent other P(Z JD&S) can be interpreted as an error or variability
evaluations such as possibilities for Zadeh's Fuzzy probability for attribute Z. while p(4 IZ &12,S) can be
Logic or for mr general multivalued truth system. understood to mean the inference rule AQrobility corn-

In determining the above evaluation, another var- necting 7 and 0 and S with H. On the other hand. often
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the conditional data or regression probability and the variables S and Z are known, then the
p(SIZtI&N) and the Joint prior probability p(Zi&Hj) p(H 1 ZI&C&S) can be computed in (4.2). For example,

are available, assuming here 0-1. which by use of If the ak  given the Z&D&S are all mutually statis-
Bayes* theorem also yields p(H-Hj iOS). One standard tically independent, tAen

result is to assume the above probabilities are 7

gaussian. which In the discrete problem here, must P(Hj1 Z1iS&S) - i9 p(a c bjkZhD&S) . (5.4)

serve as very rough approximtions- In addition, the 
k-l

sets do.(H) and dom(Z) are not easily ordered cam- and in general
F4t~bIb with a real domain for gaussian random var- 5
tables . Then. if the man of the conditional data I P(HjIZt DAS) 1 (5.5)
distribution is linear In the data S. p(H &Z IS) J-1
takes on a generalized we"gted least squJrel form.
(See, e.g. [18].) The final result. p(H-HIS 1 ). as in and the computation in (4.2) involving summing over

( 4.2), Is then a mixture of the probabilities of the domain of Z Is no longer valid if Z also repre-

such least squares estimators. sents, as H. possibly complex overlapping events.

One approach to redefining the problem here Is

S. STRUCTURE FOR DATA FUSION: THE CLASSICAL to replace the, in general,overlapping H0's and over-

PRO1SMILITY CASE MODIFIED lapping Z 's by suitable partitioning o f their domain
spaces anh then recompute the corresponding condition-

Retaining the same terminology as before, sup- al probabilities in (4.2) Involvina the partitioning

pose now that H,ZS are variables such that any of variables. For example. for conveniencedenoting

the corresponding 'sample spaces' do not truly con-
tain disjoint exhaustive events; In particular, the 1 = (1,..,S} , (5.6)

disjolntness condition may be violated more often for any subset Kil. or equivalently, KcP(I) (power
than exhaustiveness- which we will assume here is class of 1, the class of all subsets of I), define
always satisfied. Then it follows that simple cor-
responding probability measures as in Section + can- H -. u N S (5.7)
not be Imediately assigned. Nor should *brute- H[K] J J jcl.,K
force" normalization procedures be employed, unless
absolutely necessary. For example, consider H. Sup- H ((5.8)
pose in the above example In Section 4 (Table 5), the (K)
enemy could simultaneously mount the promised offense Thus for K-0,
(H ) yet also be feeling us out for peace (H ). or.
evean dditionallywanting to negotiate (H ). hus. In (5.9)
that case, dom(H)-(H H as it standl, is nUt a a] a (.

suitable sample spac& of d~sjoint elementary events, for K-{j), jel,
Indeed. the eleamntary events H are not so element-
ary, many of them, due to complax causes, being over- H((j)) -{HI} , (5.10) %
lapping: Equivalently. H in its current form may not w
be a legitimate random variable. What to do? and for K-I,

Note first that it Is reasonable to assume that H(1) dom(H) ; H n H(1
the simple labels H really relresent complex phenom-
ena and may be bettlr described through factors con- and for example, for K-(,2.4),
tributing to them. For example, some factors for H
In Table 5 are: H -K] H H n H 4 - (H3 u H5 ) (5.12)

aI - Importance of node.
a2 ' relative strengths of us and them. Clearly.

a2  ~H 9(H K 1
a3  past and present incoming salvo rate, {K]l "[K] P C .13) (9,
a4 ' duration of war to this point, is a disjoint exhaustive partitioning of V. In a sense.

, what the enemy knows about us: location, H is the tightest disjoint exhaustive partitioning of

5  h which generates back all H 's through disjoint
a6 - present weather conditions, unions. Thus,f can serve as ia sample space In place

a7 safety level-coordintion level to of initial dom(H); the H 's are in general overlapping %
&7 ' aeylvlcodnto ee ocompound *vents of If. Sf~ilar coments hold for Z.

prevent accidents;
a OlX..x-7 - Note that the mappings H( ):P() - P(dom(H))

Then ideally, in turn, given enough of these ad
factors, define rigorously the H 's in term of co- and H I ]: P(I) * P(V) are Injective (1-to-I into),

binations of values of the a s. One simple approach for all X I such that N Hence we have the
Is to determine the natural homains of values for the -[K] '
aks . dom(ak) k-,. .. 7. letting bijective relation for all K sucn H[K] ' 0

V 1 do(a)....dom(a7 ) (5.1) K-. H - (K) (5.14)
and "(K

H • b, 1  .l x b, 7 S V , (5.2) For any JcI, define the filter class of Hi , or
s determind by H, J=1 5. Thus, one point coverage class of Hi. as

the oveliTppinb of the H 's In geeral ;iii not dis- G (H IcKs}
appear, but rather will bJ clarified. i.e., in general. (Na)!

Hi n H2 C (5.3) - (H,) (H(KlI"H(K] '  } (5.15)

define similarly.
Clearly, in this case, If all statistical relations 5
between the widlv-introduced factor variables a F[Hj g ( [K] jKrI,'[K]  0). (5.16)

-6-
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Note also that the mappings F( ):doM(H)-PP(dom(H) complex and possible overlapping natures of the
and F -do(H) - PP(P) are injective. Note, further, events in dom(H), then by letting U be any uniformly

j --d H distributed random varliabl9,Qver 10,1) and defining

for any je, the bliJective relations the nested random subset $'Jof dom(H) by

H5 - c [ -* -* (5.17) (2) d poss-l([u,1])KJ KjcSI) FHj Fi F(HH
1"

Now let (0,8,p) be a probability space and {H (5.22)
11:n * V be a random variable corresponding AIo )H c! POSSH(HI) a U)5

W IZIDS). In turn, define random subset S J of it follows that for all jcl,
dom(H). $(l):Q - P(dom(H)), where for any w r n. (2) iff poss

HH I )S ifa U ,(5.23)

11 {HjljcIbw) c Hj} . (5.18) whence there exists a legitimate probability measure
Then it follow that p:PP(dom(H)) -[ 0,1) such that

.H1 if or (W POSSH(H J }  p(H C SH)) p(S(2) - G(H ))
{Kl cKrI.H(KJ 

(2)[K
])  

-

iff or (SH 
(  

") J P($E = H(K))" (5.24)
(KijcK ,H[K]u,*} " (K) cK.

1ff Il) • F(H) Remarks.

iff H e H 1)Note first that the two definitions for S will
j H differ in general in structure, but are both "(among

many other possible definitions for such random sets.
Hence f17] Chapter 5) one point coverage equivalent to the

Theorem 2. (See:El9]; [17].pp.37g-381.) given arbitrary possibility function over dou(H). (For
comparisons of choices among such candidate random

For all Jie, sets, see [20). where entropy is used as one criterion)
Each domain value H is naturally identifiable with the

poss(H) p( . H) p( C s filter class G ontaining all possible sets of H s
SS H 5.having also H H) in them, i.e.. all possible sets

- p(HjIZ1iDOS). (5.20) interactions H in K. Thus it is not unreasonable

u that the given 'ssibility value assigned to H, can
also be expressed rigorously as a probability linvolv-
the next higher order interaction domain P(dom(H))

The significance of this theorem will be more above dom(H). Again, as before, all results hold for Z.
apparent below. hote also that unless dom(H) is a
disjoint partitioning itself of V, (5.5) holds; but In a word, the possibilistic or general fuzzy set
it always follow that approach is seen to be essentially a wvakened for of

p(WH[K) l (5.21) the full random set approach, where any one of the one1 [point coverage equivalent random sets S is fixed for
KGJ the modeling over P(dom(H)), replacing dom(H). This

Again, similar results hold for dom(Z) replasced by can be thought of as being somewhat analogous ti the
Aai. suia lac resultingold frompprpaey situation where a probability distribution describing
Ssuitable space resulting from appropriately chosen a" problem is only partially specified, such as up to
factors. the mean and variance.

On the other hand, often we do not know all the Finally, homomorphic-like relations (involving the
relevant factors or subvariables cont~rbuting to one point coverage relations) can be estasblished be-
given compound events and even if these variables can on pon ofer ations established be-be pinpointed, oftn we do not know their nasturl do- tween a number of operations established among possi-
mainonted. per enp do not know their nal d- bility functions,or fuzzy sets, representing general-
mains or perhaps do not know the distributionl re- ized unions, intersections, and other set-like opera-
lationships Involved, etc. Thus the technique of con- tions, and corresponding ordinary set counterparts
structing directly a product space , such as V for H, applied to the one point coverage equivalent random
as above. my not be appropriate. sets. (See, e.g. [17), Chapter 6.) Some of these re-

lations will be used In Section 6 for representing
However. we can still make the basic identifica- data fusion in terms of the general combination of

tiom in (5.14) and (5.17). where we omit all the evidence problem. (In a related vein, see (21) for
square bracket expressions. Suppose now that prob- some recent work using random sets in modeling prob-
abilistic evaluations are available such as leas.)
p(H IZDMS) and p(Z JDiS) for all i and j , but that
the polsible overlapling nature of the compound events
is taken into account. For example, these calcula-
tions could be obtained from experts by soliciting 6. STRUCTURE FOR DATA FUSION:THE GENERAL FIXED
the individual/marginal possibilities occurring with- ANTECEDENT CASE
out regard to the Joint or overall occurrences of the

remaining events. The results of the previous section point up
some of the difficulties involved in evaluating prob-

Can these Individual probabilities or possibili- abilities for apparently'disjoint elementary" events
ties be made compatible in a rigorous manner with the which are in reality compound overlapping and diffi-
previous random set construction? The answer is Yes. cult to define precisely.

Theorem 3.([17], Chapter 5) Following the philosophy of approach outlined In
[0,1] is:any function,]perhaps Figure 4, we will establish a general procedure for

If poSSH:dom(H) i function perhaps treating the combination of evidence problem, which
representing the expert opinions of a panel, as human reduces to the probability or possibility cases when
integrators of irformation, taking into account the appropriate. Ideally, this procedure should reflect

-7-
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cognition (box I in Figure 4), the first stage follow. Next, two more restrictive assumptions are made:

ing Initial "signal" detection, but for purposes of ca nsimplicity this will be omitted in the present paper. (c) The antecedent of implication is distributive .
over "or'; equivalently. a homomorphism exists rela-

In particular, consider the c.rucial expression tive to "or" for a fixed implication antecedent. Thus

. for data fusion appearing as primitive intranodal for any propositions %, . 
8
m 0

relation (1) in Table 1, sans the probability evalua- m m
tion.and in natural language form: ( (V s))- v 03 El). (6.12) -

"If D & S, then H. (6.1)

In symbolic form, where * represents A, v repre- (d) Implication chains relative to "&". Thus for any

sents "or*, C)" represents "not". represents impli- propositions 5,.Y.
cation. 4 0.

CrD- 4 H).B v(6.2)~oB)(* ~i (.3-*(D-.S H). (6.2) Again, it can be shown quite readily the first 3

Suppose next, the following two basic properties AtOP examples in Figure 4 are such that their Tormal

hold for the natural language used: language components satisfy as well (c) and (d), when
implication is interpreted as

Ca) Letting TO represent absolute truth, for any pro- intrpe(e.14)
position a , 0 (6.14)

T T - o , (6.3) where for all m,s
d

i.e., T plays the role of a multipliLative unity w.r. (a -*o) (B' v C). (6.15)

t. "and
9
, and can be denoted w.l.o.g. as 1. Dually, (See Examples 1-3, Section 7, where ALDP 1-3 are pra-

we can assume the existence of an absolute falsehood sented in some detail. For ALDP 4, see Setion 8.
F and let it play the role of an additive zero w.r.t.
.
8
r-. Theore 4.

(b) "V" and 'or" are comutative and associative Suppose a formal language of propositions satis-

with "&" being d.stributive over "or'. fies constraints (a),(b),(c),(d). Suppose also that
variables DSHZ are to be interpreted as before in

These propkrties are quite mild and will serve the general sense and are such that ( () and 1ii) are

in no way here to restrict our choice of ALDP (alge- satisfied, then

braic logic description pair). The four examples in 'S
Figure 4 all satisfy these conditions. Q - v oZ;S;H), (6.16)

E doa()

(1) Suppose also that auxiliary attribute variable Z, where for all Z1 in dom(Z),
used to connect 0 and S with H, is such that '

or (Z) * T . (6.4) 6(Z1 ;0,S;H) d (DS a ZiH)
1 c dom(Z)

Equivalently. this means that the possible "values" of w- g(Z;.DS)hH;21 ;D.S), (6.17)
Z are exhaustive, even if they overlap. Symbolically, w(Zi;DS) - (DwS e Z )  (6.18)

v (Zi) * , g(ZD,. (.5A )(618
Z £ dom(Z) can be interpreted as an attribute variability orSI cerror 

form and

(i) Suppose, further, that Z relative to DS,and H, h(H;Zt;DS) • (Z.0.S 4 H) (6.19)
is such that

can be interpreted as an inference rule connecting Zl

wher 'If 0 & S, then H or *" , (6.6) and H.
w or ( i I not Z.). (6.7)

Zc domCZ) Thus.from the remarks preceeding Theorem 4, the

ZI formal language for Classical Logic and Probability

In many formal languages, the Law of Excluded Logic, boolean algebra, with implication given in
Middle holds so that for all propositions a, (6.14),(6.15),satisfies (6.16)-(6.19). Similarly, the

modified boolean algebra representing the formala A not(a) - F . (6.8) language of Zadeh's Fuzzy Logic (min-max type) also
satisfies the above formal relations for the decompo-

But in many ultiple-valued logics, such as Zadeh's sition of the key expression for data fusion Q. .'
Fuzzy Sets, (6.8) does not hold, and an alternate
condition must be sought to obtain the desired re- In turn, we seek the full semantic evaluation of
suits we seek. (See also Example 2, Section 7.) the data fusion expression through probability or

Symbolically, possibility or other means, compatible with the re-
sults of Theorem 4.

. C(DS *) (H v i)) , (6.9) In order to accomplish the above goal, we first

where review some concepts which may not be too familiar to

v (Zt & Z'). (6.10) many. Define a copula 41 as a mapping 01:[O,1 n40.1]
ZI C dom(Z) which is the same as a cumulative probability distri-

bution function over (O,1]n such that each rar;einal
Then if we apply (a),(b),(i),(iI) to (6.1). we distribution.. of one dimension corresponds to a

obtain in symbolic form random variable U uniformly distributed over [0,1),
-l,..,n. (Copula can be used to solve elegantly the

* (O.S A v C HZi v Zi.Z1  ) ). (6.11) important problem of determining all possible joint
£ do(Z)" distributions given specified marginals. See [22).)

UNCLASSIFIED
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For purpose of simplicity here, define a co..opul2a with h(l) '0 and R" denoting the extended real line e
#r as a mapping . J:O.ln,{O,l] which coincides including +-, such that. assuming the above pair is
with the disjunction probabilities corresponding to as eogn
the conjunction ones for some given copula. Thus if nU1 is any r.v. uniformly distributed over [0,1), for #&(x'. h' (min(h(o), Jh(x1))) ; (6.28)

,-, and (U .. U ) has some legitimate joint11
distribution, the1 * defined as follows will be a
copula and # dfinid below will be the co-copula covrely, any such h as above generates a legitimate
correspondin nr to 4:archimedean pair, where the paro s given in

For any c1 c E01] 0 [ (..,n),(62)
nNext, for convenience define for all i~j

46p.C. n P(& aU (6.20) d
C1 1 (D'S 9 Z) o~(D-S 4 Zi) (6.29)

*or(cl..*.c n) ' Pi' (U1 s ci) 0 I(Z-D-S 4 H) (Z D-S 4 H ). (6.1.0)

d(K)+l. Then make the following semantic evauaion ofQ

- 1(.1 ad *46 c(K)) C 6.21) preserving the formal structure in T ei W

whiere analogous to previous notation poss(Q , Qj pos( Ds8M)

c(K) 9 {CiticK). (6.2?) #or(&(Poss" Co ).poss 0fi))

by use of the modularity or Poincart expansion proper- i (6.31!
ty of probabilities. (For further properties of copu- npriuateoauto cf sngZets

lasandreltedfuntiosseee~g [1). ectonoriginal fuzzy set theory or Fuzzy Logic is easily
2.3.6.) Consider also the followino related concepts: seen to be a special case of (6.31), when

Define a t-norm - also denoted as #j- as a map- 1-min . #o ' max. (6.32)
ping I: [0.1)n - [0,1) which is associative, commuta-
ti ve, Aon-decreasing. continuous, and possessing bound-
ary conditions M'ore generally, the PACT algorithm [12). briefly J

mentioned previously, can also be shown to be essent-
* 1 (l~x) - X ; 4(0.x) - 0 (6.23) ially a special case of the data fusion evaluation

for all Ofxasl, and such that given in (6.31), where now 0,and 4or are in certain
paramterized families of conjunction and disjunction

#&a min. (6.24) functions. In the PACT algorithm, data association or
.correlation" is to be determined to hold or not for

Similarly, define a t-conorm as the demorgan transform a feasible pair of developing track histories. where
of some t-norm in addition to geolocation information~present may be

1-(6.25) oth r attribute forms. A typical example is where
#or (X ..Zn) #&('l-Xl ",xn)' Z represents the following potential matching attri-

butes for the two trackskil and #2):for all x1***'1n C [0.1). Also, dojfine ac Archifredean

t-norm as a t-norm where for all 0xl, (geolocatian parameters for 11, for #2

Insor system parameters for #1/or t2

,1(x~x) - X (6.26) 11 hl lengths for 1. for 12 .(6.33)

dually, define a t-conorm to be archimedean iff fl ag colors for 11. for #2 -
*or (xx 62) Also, for this example, H (denoted in [12] by 8) rep-

for all 0~xcl .r-!sents correlation level between fl and 12 (between ,%
0 end 1 when evaluated), while D-1 is assumed and S

Consider some examples of conjunction and disjunc- represents observed (in error) counterpart of Z. rhen
tio fuctin pirsbeig opuas r tnors wth o-the inference rules pa ( ) correspond to some ax-tion ~ ~ ~ ~ ~ ~ ~ ~ etdeie (ortio derire benbyua o -om ih o s( analytic or physicalcopulas or t-contorms. considerations) relation between some combination of

First, it should be noted that (min~max) and degrees of matching attributes in general with poss'
(prod~probsum) are the only such functions which are Wbe correlation levels H the terms pass (o ) rep-

boh~oplacocoul)and~tnr~-oompissml resent error distributions between true ang o served
taneously; further, the latter pair is also archimedeaq auxilbiar tcynoraio n attributes Z.PCaa prt pnd a)ix-
where'prod'denotes ordinary arithmetic product, while o rbblsi nomto n trbtsadln
'probsuardenotes formal probability "sum' (displaying guistic-based information and attributes, as showi
modu larity of probability) as the demorgan transform in (6.33), where typically the first, second, and
of prod, (See [23) . Section 4.) possibly the third entries are in stochastic form,

while the remaining entries are narrative-based and
(prod,su.) is a non-denjorgan archimeeean pair, given in natural language. The basic PACT output,

where sum is to be interpreted as ordinary arithmetic before further integration into an overall tracking-
sum , but bounded by unity; the latter is a t-conorm correlatar design, is the posterior description of '.

but nt a o-coula.correlation based upon observed or reported data in-
but nt a o-coula.volving the track history pair in question, as is

Finally, to complete this brief preliminary dis- represented in (6.31) by poss(Q'Q,
cussion, the important canonica~ nreoeena thej.2D e.nt.ohe ad f ecos
for archimedean pairs of t-norms,t-conorms, states thatOnteohrad.iwecos

fo n uhpi 4 ). there always exiS a car- $6 prod I #o - SUN (6.34)
responding continuous nZ- increasing function h: [0, .1-R or

-9.-
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then (6.31) reduces to the classical probabilistic (6.31) and assuming the constructions in (6.35)-(6.39).
data fusion evaluation given in (4.2). it follows that for all jcJ,

Mext consider the evaluation of data fusion as
given in 16.31) when 0iIs any copula and #or. 1s the poss(Q.%) , poss( Aj n(Sc0 x S l *
co-copula determined by 4, as in (6.21). compatible - p( A~ n(Sa, X y 5~
with the data f'ison problem as modeled here. Thus, - plu (Aj) (6.44)
siw'itar to the specific exaipple given in Section 5. Sa 5 .
but with generality in mind~usin (6.29) .(6.30). let a
#fxn D and SIweepasK denotes the plausibility or upper

d2m1o) (a1Lide) -, dom(Z M jc; (6.35) SO

dom(O) - (B licIjeJ) '- dom(Z)xdom(ji) probability measure with respect to random subset
ii ' SaX SB0 of dom~a)dom(o).

(UZ1 H )iCI~iJ). 
(6.36)

where I and J are suitably chosen index sets. Remarks.

Let Niel.u) 1  (6.37) El]For related results and general background. see
icl, 171.Chapters; 3 and 4. Shafer [24] independently has

JtJ developed use nf plausibility measures and other bi-.
be ay stchatic rocss wereeachmarinalU 1  ectively related functions, such as "belief' and Abe ay sochsti prces whee ech argnalU1 doubt' measures in modeling combination of evidence

and Uij is some random variable uniformly distributed problems. However. Nguyen [25] has emphasized, via
over [0.13. Then define random subsets S of domIa Choquat's Capacity Theorem 'which characterizes such
and S of dam(a) by . for all icljJ. functions in terms of both their random set connect-

B ions and their generalized Poincart expansion forms,
01 sc If U POSM(LI)that such 'measures" require fJJJJ Frecification of

a1  S~ 1ffU 05~ (6.38) the Associated random (subisets.Contrast such PoeI~i
a1 ~a 1 ff U,>pss~i with that employing possibility functions in a general

and ~~a"i multiple logic context, as given above, using some pW
andS f iJpss( of conjunction and disjunction functions. As shown In

c 0 f 0~ P05( 1j (6.39) the previous section and here, the latter approach only
Oi S 1o ff U ; pss (0) in effect requires knowledge of the one point coverageij 6 U ij functions of the relevant random sets Involved. Even

Mote that if the U are all Identical and.separately, in Theorem 5, where an equivalent plausibility descripyr
the U1  are all idintical. then ion is given, it Is only specified over the A *s In

(2)) (6.39) short, any Plausibility measure is determined iby theS S2). o incidence function of some appropriate random set with
a M all ordinary subsets of the space; any belief measure

as ive i Thore 3 Deermne*&eorthrough U,. is determined by the superset coverages of a randomas gvenin nore 3.Detemin #,, #o ftset; any doubt measure is determined by the subset coy-
Then it follows t a the evaluation of data erge of a random set.

fusion In (6.31) beco%:-. using (6.21),(6.35)-(6,39). In any case, Theorem 5 shows that a homomorphic re.
posee) (,card(K)+Il (6.40) lation exists between the possibilistic incidence form

PO55(i"%) ! ~ f data fusion evaluation as givin originally in(6.31)
OPLI and the corresponding equivalent probability fore

where for all subsets K in5.44).

M.d *( 1 p9aos ))pU poss (0ij)))) If In (6.37), P..instead of being chosen identical
,., #&4£ (i apss(i i)pUj A for all 111 and all Li separately, is such that all U1icK

are statistically independent of each other and of all
- ~ ~ ~ ~ u K I P l psa(aI)U iso A(i))Uij which are also all Independent, than the resulting

iUK S. and S~ are not only statistically independent, but
arethesmamalentropy one point equivalent re resent.

- P( W(a, C Sa I (Bij C SB)) ). (6.41) :tIVIe for poss. and poss, respectively. (See [20].)

Out, using the PoincarS expansion of probabilities, In another direction, the following important
(6.40) and (6.41) yield asymptotic result holds for the data fusion expression

in (6.31): Moting that variable Z can represent a corn- ~
*osQ-j p( or (NI 1  3 Sa)&(ij ItSO)) )plex of attributes, some probabilistic in nature,

ict others inguistic-based in nature, so that their des-
criptions can be possibilistic but not probabilistic.

-p( A i n(S5IX Sjli' 6). (6.42) partition Z accordingly into

where Z *(Z.,Z") ,(6.45)

A 9 (IOjJc~(Z.IH)~I where w.l.o.g. V' is the vector of probabilistic at-
A~ (m1.1~iicI~~iZ.Z1~~iieI)tributes and P Is the vector of non-probabilistic

(6.43) ones. Mote that by the GcarLnical raoresentation theor-
Moting that the expression in the right side of eq. em mentioned in Section 6 (see eq.(6.?S) ,tf or archi-
(6.31) can be written in a natural way In terms of seften t-norm t-conorm pair is chosen for the evalua-
possibilities analogous to th~at in (6.43). we abtain tioni in (6.31;,ta osQ eoe oooetas
the following result: form th . say, for generator function h of #, of a

Theorem 5. sum of terms over Ic!, Where
Given variables 0,SM and auxiliary variable Z h'.nhD.).(.6

as before, then under the assumnptions leading to eq. Th~x 1 mnhO, ,(.6
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for all x c Rt, and the qlth ter , =0111), is The somewhat similar, but mcre eneral structure
h{1-"6(poss.'(Z4 Q6(ZXHj)))). (6.47) for such systems is given in eq.(7.1r£ (7.! )

where a is partitioned as Z into (W') and d v k (ik(ZOl.MJnS)" kk(ZiHj'DS1)
£ € doe(Z) W

6( 1 1 ,H ) or(49(IoSs.(ZT),poss (Z',Z" m ))).(6.48) w kkdij

c do alrY) V I repesentinq (D-S 0 H), where for all k, k and

Note that dom(Z') is finiteas well as all other Are,possibly expert-derived, boolean functions ,i.e.,

domains of relevant variables, in order for finite ar- combinations of operations , v . ( )'.

gument functions #, and $or to be well~defned. In some Next, to complete the general data fusion theory
cases, these finite domains are the result of discreti- again referring to Figure 4, we must choose an ALOP,
zations and truncations of initial natural domains i.e., a pair consisting of a compatible choice of
which are Infinite and/or continuous, especially those formal language followed by a semantic evaluation or
corresponding to continuous probability density logic,
functions. IN this ccntext, suppose all proLabilistic
attributes, making up Z' are such that they correspond Consider then as reasonable candidates for the
to actual protatility density functions which have evaluation of (7.1),ALDP 1,2,3 as In Figure 4.
all been so discretized as above. Denote the symbol
dom (pss(Q) ) to mean that the limit of poss(Q) willdom(Z' )-" Example 1. ALDP 1.

be taken, if it exists, as dom(Z') and posse, are re- ALOP I - (boolean alqebra a with (6.14) valid for 4

fined so that all cell sizes approach point limits Classical (two-valued) Logic
and thus post, approaches a Joint p.d.f. fore
corresponding to random variable (21IDS). Then we The calculus of relations for implications for
can show the following: the formal language part here, a boolean with (6.14):

For all tG, ,o Q,i-1,..,m, mrl,2....,
Theorem 6. Asymptotic limiting form for data 

fusion.

(See [26].) m 0 mIF!(it4 e1) -(t;I)*1 (V In.) (7.2)
Suppose that all of the above assumptions hold v i:(

together with some mild analytic conditions for the m • m m
archimdean t-norm. t-conorm pair *Il,,r chosen for (ai "(( V 

i
)).(7.3)

the data fusion evaluation (6.41;. oil WI -. " i
Then Thus, if i .... 60 , then (7.2).and (7.3) be-

lie (poss(f-. . Ih(v.EZ,(C(G(Z'H)))). (6.49) com homomorphic relations for fixed antecedents:
domCZ)4 h hhZ* m av (0S, 0 .) -(0 a ( Vl 1)). (7.4)

where - 0 0 .1

and all Dix%] Vh d(-d h(x)/dx)xl (6.50) 0 n

(x) (04Y (x.y)/ay)y O , (6.51) 1o5

and where E2. denotes ordinary statistical expect, But negation is in general not a homomorphic relation:
ordinary~~~~~ saitcl xete(a ), - a .'so 0 (a00 (D.0 3 (7.6)

tion .r.t. r.v. V, conditioned on D&S throughout, (o o o o o o
where Z' corresponds to the limiting p.d.f. for Also, for all a0,Yo . , (7.7)
poss . (l0o)" (B Ao'B) ;(0 '0 (7)'.)

Thus, up to essentially monotone transforms, the Consider now the semantic evaluation part. De-
limiting fore of the data fusion computations here noting the evaluation of any proposition variable a,
Is am averaged value of the data fusion withorly)fixed having domain of possible (or not) values In Q(dom(a)
domain attributes Z*. Further simplification to the € 0) as function posso:dom(a) * [0,1J,for any otcdomk4
classical Integral (and continuous) version of (4.2)
occurs when the fixed non-probabilisitc attribute com- pss(&I) - 0, i.e., a, 9 a
poents are missing. These results can be used for (7.8)
data checks when modeling via (J.31). (Seee.g. [12].) or

For other controversies involving probability vs. Poss(1) - 1, i.e., a I C a
possibility vs. Doepster-Shafer bellef.doubt, etc..
see E17 (espcially, Chapter 10). and variable a can be identified with a subset of 0:

7. STRUCTURI FOR DATA FUSION: THE GEERAL (a (aic dom(aiJ A poss (a )I). (7.9)

COmINATION OF EVIDENCE CASE with possS playing the role of an ordinary set Member-

Let us return to the formal language aspect of ship function. Then.Classical Logic, as a truth-futc-
date fusion as given In Theorem 4. In general know- tional logic (s[ee.g. (27) for further elaboration)
ledge-bsed systems such as medical diagnosis ones has the fotllowing hoGomorphic forms, for all proPosi-
consist of A collection of inferenco rules corres- tiom variables (and similarly for all propositions)
pOndil to 4(N*Z DDS) linking either observed data. aj: pass ,:max(poss poss (.
such as D.S r rtions of intermediate variable 2 evl i o ) (7.Zol
with Other Portions of 2 or with diagnoses directly, 's a
played by the role of variable H. Similar conments pSS * mtn(pssess) (7.11)
hold for the attribute variability term 9(ZI;DS). posse, - 1 - posse, (7.12)

-11-
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pass0  0 *pass 1  * (7.13) ference rules in the knowledge-based system. multiple-

and hnce 0valued truth logics can be avoided.

poss5 ~ -* iax(l-posso posa). (7.14) Example 2. ALDP 2.

wher inallof he aoveequtios. al fnctonsartALDP 2 -(modified boolean algebra 0 with (6.14)

understood to be evaluated at arbitrary common domain Zdhs(i-a)FzyLjc
points component-wi se. As mentioned earlier (again, see Figure 4 and

The usual presentation - which is equivalent - is associated remarks in Section 2). "modified' boolean
through truth tables. but the above display allows for means a pseudo-complemented (distributive) lattice,
natural generalizations to Zadeh's (min-max) Fuzzy or roughly a boolean-like system without the Law of

Logicin ALP 2.Excluded Middle and all its consequences holding.
Logicin ALP 2.(See [28J.pp. 14-16 for a related discussion. [28) as

It also follows that the semantic evaluation of a whole 31so serves as a good introduction to Zadeh's
the data fusion form in (7.1) becomes here: Fuzzy Logic.)

possQ-Q)* ~s (NIThe calculus of relations for implications for
PO I - 0os.5 ( Aii the formal language part here. a . is the same form-

ally as that for 0 as in Exampleol, except for the
mx C mm max~-i~~ , ~~) )*fol lowing slight modifications:

Z c dom(Z)(k-l,...m) (7.15)
viban for all k.J' (11) The middle equation in (7.7) will be valid. pro-

i pose (z.H~;DS) (.16)vided that aB i.e., %~ - co*B0 . otherwise in
ik igeneral it is not true.

(Z&jDS,(7.17) (1U ) AdJoin the term v to the consequent ofpass h k* on the left hand side of the equality for the far
and where the expressions in (7.16) and (7.17). if right chaining equation in (7.7).
necessary, can be evaluated further using (7.0)-(7.14).

But since we have here a simple two-vle logic.
eq.(7.l ) reduces to: Then the semantic evaluations precede in formally

Ps( -4 1 iff there is some attribute value the same way as for ALDP 1. but here the range of val-
ue of each possibility function is to the unit Inter-

Zsuch that for each k. k'l..,u, :as [0.1]. instead of being restricted to the set
1(0.1), replacing (7.81. Thus aqs.(7.9)-(7.l 7) all re-.1

(jk* h.k) when evaluated at ZIHjO main valid here. Eq.(7.18) and eq.(7.19) are no longer
S. Is true~i.e.. Pass. ZJ.S valid in the context of ALDP 2. On the other hand~tqs.

Vk# U. (7.20)-(7.22) hold here, with apgropriate modifica-
-1 .or ejuivalently, Zi.N,.0.S all tions followinig tiose in (1),t' II above.

fire inference rule ('t' k : ith-
er ik is false at this evaiuation Example 3. ALDP 3.
(vacuous antecedent being satisfied)

Or more non-trivially. kk is true ALDP 3 - (boolean algebra n with (6.14).
for this evaluation (7.18) Probability Logic)

ss(..l) 0iffnosuc atriut vaue as Since a is the same as in Example 1. all of the
'Eove exists, relations in eqs.(7.2)-(7.7) hold here also. On thea(7.19) other hand, the semantic evaluation aspect - Probabil-

ity Logic - differs considerably from the two previ-
Alternatively, one can evaluate (7.1). by first ous examples. In this non-truth-functional logic (see

directly applying the calculus of relations for In- again [27). especially-X~apter 2, Sections 26 and 27
ferences In the formal language ((7.2)47?.3)) and then for background), we have the usual basic (finitely
evaluate the result semantically. Thus. additive) probability properties, for a given prob-

ability measure p:Q - [0.1]. playing the role of the
poss(fl-fl) -possWI(H00 6 O (HJ;D.)) semantic evaluation pass in the two previous examples.

(in order to use the more standard notation, p is used
- maX(l-pass(q(H ~oDs)).Pass(a%(l ;.S ))) In place of poss.) Only for purposes of comparisons the

whr 720) following well-known properties are given:
weem m For all propositions a 1 c a

q(Nj;D.S) Z omZ lij'jkIjk)' kij )~ ~a)*pe3-pa. , (.3
1 o(Z - - (7.21) a(ov00 a ~ o * (0) -(6.0 ), (.3

the modularity property, extending to the Poincare
and expansion, used previously jn this paper, where for

IA(N ;O.5) g om Z k..bij ). (7.22) all a.1....n C a-lettng In~ 10...,n). n-1.2...

where, In turn (7 la)-(7.14) coujld be used to evaluatep( *( 1)r(Kl(£* ) 7.4
further poss(qj andi poss(i * which of course should i.1 iC I%

lead back te 0.15) and thuds (7.18).(7.19). as a I
check. p(*m) *I -P(*,) *(7.2S)

The philosophy of approach in this example is
that for the modeling of data fusion,in the context p(O) 0 1 ~) (7.26)
of medical dianosils. fnr example, although truth can resulting in the following evaluations for implication
only be 0 er 1. by introducing sufficiently many in- (by(6.14). for 4)and some less-known inequalities

UNCLASS IFIED
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Involving conditional probabilities: P(O 0 a0 ) - P(so) + P(a) - P(BO'-. )

P(6o 11%) * p(po v %) - l-p(((v%)'- l-p(s*.oo  • p() + p(%.p) (7.35)

- P(eoI0 ) + p(so* Is) - P(B0., for all anB0o  , followed by use again of the basic
p(% 08,)  0 p(ool') properties of probability function p in (7.23)-(7.26).

Obviously, in the above schemes, tho number of

- P(% I%) + P( OIso)'P(6o) computations involving probabilities of the conjunct- 'n

ions of relevant events or propositions can be quita

a P(a0 1a) (7.27) large andas well. it may be difficult to evaluate

each s0 .h conjunction, unless some simplified depen-
& p(a%.B) * (7.28) dency or other relations are assLoed for certain of

the events. As a consequence . saveral tactniques
where the conditional probability is defined as usual have been establis-d for evaluating combination of
as, e.g.. 4vidence in a kn wledge-based system, when marginally

P(aoo) 9 p(mo.o)/p(0) (7.29) one has Available estimates of probabilities, or rela-
0 ' ted certainties or likelihoods or confidences. etc.

provided p(so 0. for each of the inference rule forms (kIj a ktj),

The above inequalities are strict,in general,and Some of these procedures are ad hoc in nature, others
show that.basically, we cannot identify implication, are more analytically based. For a compendium, see
as defined in the formal language (Q) via eq.(6.14), [29].
with a 'conditional object* such as (aoIs ). otherwise
this would, following evaluations by p an

8 
making the

natural Identification 8. DATA FUSION AND CONDITIONAL OBJECTS S
p((afa*)) - p(%oe 0 ) (7.30) In Section 7, we have seen how a general infer-

contradict the Inequality in (7.27). Hence the behavior ence rule structure for data fusion can be evaluated

of conditional probabilities, while roughly resembling through three different approaches ALOP 1-3. In all of

that of the probability of Implications is not the these, the key connector for inference al was Inter-

same - indeed, one can, by choosing judiciously 0  preted in the formal language components as -* as

close to o in some natural sense, make P(sog e) o given in eq.(6.14). On the other hand a natural - and

approach unity, while for the same choice of %.0. commonly used - semantic evaluatian for inference

p(ael5) approaches zero. The significance of' s rules is through conditional probabilities. That is,
result apillbe zeo fTher inifithe next hese the evaluation of a typical form (jkij # kij) isr s u 1lts w l l e e x p l o r e d fu r t h e r In th e ne x t s e c t io n .,o o e c o c f r b b l t e s r

where we develop an ALOP (4) where formal implications P(kkijljkij) for some choice of probability measure
o* so can be Identified with 'conditional objects" p over 0, the set of all events or propositions, which

(%100). whose somatic evaluations as in (7.30) are for purposes of simplicity, from now on Is assumed to
be a boolean alg-:bra. With this colc of evaluation.

conditional probabilities; but In light of the above apropos to the spirit of this paper, we seek a formal
remarks, necessarily these entities lie outside of the language which will be compatible with these evalue-
original space of propositions a. tions.I.e., will form an ALDP.

Returning to the data fusion form in (7.1), the However, as pointed out in the discussion In the ..
semantic evaluation for Probability Loqic becomes, previous section centered around (7.27), one cannot
using first (7.24) and then (7.5), Identify implication via (6.14) with conditioninq

as evaluated in (7.30). The apparently commonly-held
p(Q-Q)* p(O.S a H4) belief that such an identification can be made with

(.I)card(K)+l no serious consequences, often called in the litera-
I ( • p 9c art . (7.31) ture of logic as Stalnaker's Thesis [30], was attacked
tKdom( Z) by Lewis [31] and independently by Caiabrese [32]. The

latter Indeed showedby use of a simple canonical ex-
which can be further evaluated through use of (7.27) pansion, that not only -0 in (6.14) would not work,
(equality pert) in conjunction with (7.23)-(7.26), but any boolean function of two variables could not be

where similar to (7.21). (7.22), but differing In the used to play the role of conditioning, compatible

operations Involving Zi, with conditional probability evaluations.

04 , kilj v * jv(7.32) Moreover, It would be particularly desirable, to
i k iJl v JkIj replace this rather flawed situation, with an ALOP

ZZ K ) I which would yield feasible computations for data

( C I: k Ie  fusion or at least be on the same order of complexity
as ALDP 1,2,3. Note of course, If truly all inference

and rule antecedents are identical, as Is the case es-
clog sentially in Sections 4.5.6, then there is no real

and k k (7.33) need to work with conditional objects, since all con-
I k ditioned events can be simply considered as uncon-(~ 1k' )ditional ones relative to their Intersections with the

I fixed comon antpcedent, or one can stick with the
interpretation-of implication as in (6.14). Compatible

Alternatively, by using both (7.4) and (7.5) from with this result . note the homomorphic relations
the calculus of inference relations, and then applying for implication 4 w.r.t. disjunction and conjunction ,
p. one obtains the same as (7.20). with'poss replaced - but not negation - as given in eqs.(7.4),(7.5).
by'p* Thust m i -%dtfi trg n

Butfor the mdeling of data fusion through in- 
-NO

- .* (HJ;D.S)). (7.34) ference rules with y antecedents,. no such direct
simplification occurs and the development of such con-

which can be evaluated through the equality part of ditional objects would address the problem. Although . -5
(7.27) or through the expansion we have stated above that implication op&rator * for

a fixed antecedent yields homomorphic relations for

UNCLASSIFIED
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v.9, but not ( )' conditional probabilities are comb ( o " 0
patible with homomorphic relations holding for all 0 Y 0
three operations, for any fixed antecedenti.e..-b- " a* a 0 ' O".v o
viously. for all * c G (x*' , + .,01x c o S a (8.14) 

Wo(%lo)- - p(mal-1 ) - p(a.,1o)- (8.1)
the principal ideal coset generated by y; with resi-

p((%1%) v (6oo)) - p( 00
v 

sol o)  . (8.2) due a.

p((e o)~. oi)) - p(s0.sojv o) . (8.3) UnaI: use first the basic homomorphism theorem for
quotient rings and the equivalence class property

Recall also the operation + over a , which In of cosets applied to (8.13). Again, see [34].
terms of v,., ( )P Is . for any %ot a n 3

@o to. aLo'6o v %.1 O,  (8.4) Thus, for a fixed antecedent, even though, as

stated earlier the resulting conditional objects

and conversely, could be identified as subsets or subevents of the
S*(antecedent (noting Stone's Representation Theorem).

a 0 to aa + a0 a000 (8.S) nevertheless the actual algebraic structures of

a + (8.6) these entities will be of non-trivial use: Suppose -,f

o owe wish to perform boolean operations an conditional
objects with differing antecedents; how can this be

Thus there is a bijective relationship between accomplished,iiimil1Ile with the results In Theorem
(Q,v,..( )1), a boolean algebra and (o,+,.) a boolean 7 ?
ring. (for further discussion and properties, see [33) Previous work in this direction includes:Hail-
Furthermore, recall the Stone Representation Theorem pernn r37]. who extended some of Boole's original
( 33]. Chapter 5) which establishes an order-preserv- ideas and developed essentially the same entities
ing isomorphism between any given boolean ring and a as produced here, but from a different- and more
corresponding boolean ring of actual subsets of a complicated-perspective, with relatively little
fixed universal set say X where the correspondences attention paid to developing operators among con-
hold: ditional objects with different antecedents, using

I - X ; + - A (symetric set difference); the technique of universal algebras and 'partially
definedopertors; Oomotor [38]. who following the

0 I 0 ; v - u (set union); direction of "4wUlitiative probability structures%
- -. n (set intersection); as used In preference orderings and subjective probe-

or X-q( ) (set c l t'; bility, developed rather complicated expressions
) o -set camp emene for combining conditional objects, not realizing the

s (partial order over n) - r (subset relation) rich structure inherent In such entities;Adam [39],
(8.7) among others in the literature, who considered "con-

ditional logics" which appear to be somewhat related
All following results can be interpreted In to the concept produced here. hut differ considerably

terms of ordinary subsets and the alternative boolean In structure; and Calabrese [32] who was apparently
algebra or boolean ring structures, the first to attempt to develop directly conditional

rating that also, for any a .0 e 0. objects from a logical consequence viewpoint, which
o o can be shown to be equivalent to that given here([36).

P(a0 I's) p - 0 ) .(8.8) Section 2. ;but Calabrese proposed ad hoc detinitions

S  pa o  for boolean operations on conditional objects with

the next result shows that under quite mild arAd simple varying antecedents.

conditions, conditional objects are essentially char- In the approach taken here, deyeaoing i11 _C-
actarized: L" f= first s jrles considerations, th re-

Theorem 7. Characterization of conditional objects quired operatons u ditonal objects are defin-
T3] red simply as the natural class or component-wise ex-
["34] tensions of the original operations. Thus. for exam-

Given boolean ring 0, there is a unique space ple,let aGooor 5so € a arbitrary. The natural class
A of smallest possible classes-according toextension of
partial ordering.denoted as the onditional s * applied now to (a IS) , ( 6). not-

(a ,7 (Iv). ( ) for all ao o.ct ing each conditional object Is in reality via (8.14)a% o 0 (ao-%) (0Io .. o 11~o , o  a subset of 0. yields:

. a such that the meusure-free counterparts of
(8.1)-(8.3) and (8.8) hold. That Is, (a I6 ) , (Yo1o) -(q , rlqc(ao o ).rc(-ot 0 )

(% ra )' - (W Iv ) (8.9) .((x.0 + % 0 , + v1 % , l

(%[ o) v (s1Yo) • (GOv *o!o). (8.10) S .. (8.15) 'a

(%]o ) - (%. 00o[)o) .  The basic structure of the conditional object

and equivalent to (8.9)-(8.11), one can require eqs. extension 3 of 0 is summarized next.

(8.11) and Theorem 8. Basic structure of 8 [34],[35],[36].

(a1t o ) + (0 u[v o )  (%+ a o[Yo) (8.12 (1i) In terms of quotient rings.
to hold; and

(%1*oy) " ('v 0 1yu). (8.13) 010 u(n/.f) u(/.oYO). (8.16)

Specifically, such conditional objects consti- (ii) Conditioning as defined here can be identified
tute all possible principal ideal cosets of ring a, essentially as the functional inverse of one-sided

where for any %.Y, c 0, conJunction,i.e., conditional objects (a0  0 ) all sat-

-14- "
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isfy the zasic relation analogous to (7.29) for velopment of an' outer approximation technique to
cooditiona; probabilities and a related condition: force closure for non-booleen functions. including

arithmetic operations over conditional obJects; rela-
. t *(817 tions established between ordinary conditional random

0 0 ~ O~Ovariable: and a randomized version of conditional ob-
&ad Jects; and estiblishmont of various probabilistic

* {xx ca. ~t~- ~ v~) (818)connections. sucr as measure-free independence; meas-
ur-rebayesian adsequ-ntial learning forms; and

(iii Th mtara clss xtenion ofallbooeanthe proof that the extension of any probabilityopera Thelt lcasetnions ormf t arl wel-efn ld it measure p:Q - 0.11 to p~fl (0,D1] through eq.(7.30)opertios fom to ar wel-dfin-cloed ithyields for the extension a monotone function.( Again.ring-like pjopertits~i.e.. in the siam previous se 34J-4361. for furtherdeal.
Seense. aIiS a modified boolean algebra.sedtal)

(iv) ag ,.a Most importantly here analoguts of calculus of
sicefr ll% c .(3.14) shows Immediately that relations for ALOP I (*qs.(7.2)-(7.7)) hold for con-

sic o il C0 ditienal objects , as Theorem 8 shows. Moreover. the
(8.19)hypotheses for Theorem 4 all hold here. At this point

(sA~l) ~let us define ALDP 4. for a given boolean algebra a
(w) Alva.. partial order s defined over 0. character- as simply

izi h y Goan a *a-% if D t v % .( . 0 ALDP 4 (I p .(8.25)

eaS 1ff - 1fS (.0 where p:d -(0.1) is the conditional probability ex-
Can e etened ire~l t I iththe amechaac-tension of P:fl - [0.1), as mentioned above and where

terizations as In (8.201 where(unconditional) ob- Implication is interpreted as conditioning. i.e.. for
jects in z are reced by conditional Ones In d. all %.
Them comIsil this with (Iii) and (Iv) establishes *,.) .)*(26

( .v.. )*.*;I) as a natural extension of Itso o
unconditiosil counterpart (Q.v.,.( )'*s.(Note that implication or conditioning here is re-

(vi)A hs~ccallus ofo oprations Is . In addition stricted to be upon unconditional elemonts. i.e. el-
to the Pr,serte in 8(.13) for any el.yl 6 0. ements of SI. not upon other properly conditional ob-

i~l...m.mljects. Some results Indicate a possible Identification
mi * f Iterated cnnditional form with Simple conditional

w~~~~ :mI~ ~ v ~ )(.lbjects([36].Section 4)' so that In a sense this ro.i-I T i v 1 . 821 striction my be unnecessary.)

m m m aFinally, consider use of AtOP 4 in evaluating
Ieli ~ v a-Y v i'r 1).(8.

22) data fusion expression Q in (7.1):

u m mDirect use of (8.21) and (8.22) show that
~.1 4y) * *~) .(9.23)m

Moti 4 the reductions of (8.21)-(8.23) when ZP cdo(Z kl
antecedent ai. * V*v a as in (8.9)-(8.12). It . ;N D 5)l4(Hi D S) q(H ;.s))
follows t?.A all boolean operational extensions
over 0 coincide with corresponding cOSet operations P(,iCHjD.S))/P(6(H .D.S)vq(Hi;D.S)).
when restrtcted to a fixed quotient ring. here (8.7)

0/, etc.. where q Is given In eq.(7.21) and
(vii) As a special Case Of (8.22). the following k
chaining c.2nditiofl holds for all a0 .80 yo t 91 4(M 0.S) (ki~kJ) v828

~o 'o1  (~ I'VoY~'1o ~ (8.24) ~ 1  imz ~~k~ii).(.8
Thus, due to the calculus of o perations given in

Proof: The most difficult proof Is thet of (8.22). Theorem A. computations for data fusion usinj AI.DP 4.
A -sktch cfr the proof for the case m-2 Is given in wlith Implication Interpreted as a cenditioning~com-
(35]. Theorem 3.1; a full Proof Is presenited in (34) patiole with conditional probabilities. appears no

where all 2ther proofs are also given, more complex then that for the other choices of ALOP's.

Remarks. 9. CONCLUDING DISCUSSION
Apropos to Theorem 8(f). it follows that all

results in the theory and application of linear Someryk
(w.r.t. - 2ar v) boolean equations, such as Pre-Thsperrsntanubrorsls nrit-0sented In '401xcan be reinterpmtad in term of con- This poaper prcoesentsp-aonumber of eautasion.bt

- ~ditional :.Jects. Extensions of the concept Of con-intordachsv tp-wn heyofaafuo.
ditioning to more general structures than boolean. I eto .agnrloeve ftedtsuch as mc.*-Ified boolean~or Yon Neumenr, regular. orInScin1*agerl vrie ofteda
to acat7ry theory setting,have been considered fusion problem is presented.with the conclusion that %.
[34] data fusion Is Identifiable As the combinaio oevi-

dance occurring within decision nodes of C y syte.

*many 2ther methematical properties hive been In Section 2. qualitative relations are established
derived fcr conditional objects. Including: char- pinpointing the role of data fusion In C' systems- as-
acterizatI20ns for Iterated conditional objects.i.,. pecially as perceived by the author in previous work
conditiona: objects whose antecedent and consequence (see Fig where data fusion Is a process

aealso c..nditional objects. extensions of Stone's within ke maeinemeitewt
llepresentai-.on Theorem to conditional objects; de- Incoming *signal* detection and hypotheses selection.
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Also, the concept of an ALOP (algebraic logic des- a disjunction of conjunctions of inference rules with
cription pair) is introduced as part of of the total antecedents and consequences in general functional
evaluation procedure involving data fusion (Figure 4). forms involving possibly all four relevant varaibles
Three Important examples of ALOP's are given, corres- D,S,Z,H (see eq.(7.1)), essentially the sae structure
ponding to Classical Logic, Fuzzy Logic. and Probabil- as a general knowledge-based system, such as used in
ity Logic where In allimplication is Interpreted as medical diagnosis or parameter estimation. A calculus
a disjunction of a negation and affirmation. A partic- of operations Involving implications is reviewed for
ular quantitative counterpart of the qualitative model each ALDP and then applied to the evaluation of data
given in the previous section is presented in Section fusion (Examples 1,2.3). Finally, a fourth ALOP is
3. In this model, the collection of all updated mar- determined in Section 8, based on Interpreting infer-
ginal node state distributions (in either the classic ence rules through conditional probabilities. For con-
probability sense or In a multivalued logic sense of sistancy, this requires the full development of a
broader scope) is shown to depend functionally on es- calculus of "conditional objects" (Theorems 7,8). It
sentially ten types of primitive relations [in the Is shown that this ALDP can be succesfully used to
probability interpretation, they become conditional evaluate data fusion probabilities with a level of
proba ilities] among the basic variables determining complexity of calculations not exceeding that of the
the C system In question. These variables Include: alternative methods, but here allowing rigorously for
S. 'signaldnodesN r~o, .tR. response of nodes; Ode- conditional probability interpretations of iplica-
tection state H, hypotheses selection; and F, algo- tions.
rithm choice iTheorem 1). In turn, this rqsult is
used to establish a zero-sum two persin C decision Future Work and Open Problems
game between adversary and friendly C systems. There.
each game move corresponds to a choice of the ten In this paper the cognitive process phase has
types of primitive relations, up to feasible and con- been used only implicitly in the evaluation of data
patible conditions, and the resulting loss due to a fusion distributions. Future work will be directed
joint move by both players is some figure-of-merit toward more direct use of mental imaging and related
based upon me's and mop's, which are in turn eval- thought processes. This is because in addition to the
uated through the node state distributions as a con- 'formalistics' involved In translating detected sig-
sequence of the primitive relationslforms(Figure 5). nals (or 'signals', using the more general sense)

as shown In the sequence of processes In Figure 4,
In Section 4, the quantitative expression for heuristic processes may also be used, possibly short-

data fusion p(HOS) (eq.(4.1)) is considered for the ening the process path or providing alternative means
classical probability case. An auxiliary variable Z as for example In NI (Natural Intelligence).
is introduced for the evaluation, representing possi-
ble characteristics or attributes which can be used Alternative structures for data fusion may also
to connect 0 and S with H through probabilistic con- be investigated - as opposed e.g., to that given here
ditioning here. This results In the well-known weight- In (6.16) or (7.1) In formal language form. Recursive
ed sum of conditional probabilities form (eq.(4.2)). computations for general data fusion may also be pos-
In Section S. two modifications of the classical prob- sible, analogous to the well-known Kalman filter or
ability case are considered. First treated is the related maximum likelihood forms. In a similar vein,
situation where variables Z or H in actuality are progressive change for hypotheses distributionsbased
not random variables due to their'sample spaces of upon newly arriving data may also be monitored through
elementary events or domaln values not representing entropy measurements. Details of this have yet to be
truly disjoint (and exhaustive) events, but where established for the general case we seek here.
the relevant subfactors contributing to these - In
actuality, compound - events can be determined at Finally. conditional object theory must certainly
least in a full probabilistic sense. This resultsin be developed further, if only to be able to better
affect.in random set descriptiomreplacing the treat iterated conditioning and required approxima-
original "distributions' for the variables ?Theorem tions or truncations of computations for data fusion
2). Next, the case where not all subfactors are evaluation-wnm ethrough conditional probability
known Is considered. In this situation, If experts evaluation of inference forms.l.e., through ALDP 4.
are available, possibility functions can be gleaned
for the overlapping or vague events, which. in
effect, take Into account the possible Joint occur- 10. ACKINOWLEDGMENTS
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